ДВС: устройство, принцип работы, где используется двигателя внутреннего сгорания

Ремонт автомобиля

Что такое ДВС и для чего он нужен?

 Чтобы транспорт ехал, что-то должно приводить его в движение. В разные времена это были запряженные животные, затем на смену пришли паровые и электродвигатели (да, прародители современных автомобилей появились даже раньше, чем традиционные ДВС), затем моторы, работающие на горючем топливе. Современный двигатель внутреннего сгорания – это механизм, преобразующий энергию вспышки топлива (тепла) в механическую работу.

Несмотря на достаточно громоздкую конструкцию, на сегодняшний день ДВС остается самым удобным источником энергии. Электротранспорт, конечно, всё больше входит в обиход, но время его «заправки» сводит на нет все преимущества – канистру с электричеством в багажник не положишь.

Свое применение ДВС нашел во многих сферах: по одинаковому принципу работают автомобили, мотоциклы и скутеры, сельскохозяйственная и строительная техника, водный транспорт, двигатели самолетов, военная техника, газонокосилки… То есть, практически всё, что ездит или летает.

Устройство двигателя внутреннего сгорания

Несмотря на разнообразие типов и конструкций ДВС, принцип его устройства остается практически неизменным на любой технике. Конечно, отдельные элементы конструкции могут сильно отличаться на разных двигателях, но основные узлы и компоненты очень похожи между собой. Итак, двигатель внутреннего сгорания состоит из таких конструктивных узлов.

Блок цилиндров (БЦ) – «оболочка» ЦПГ и всего двигателя в целом, в том числе с рубашкой системы охлаждения.

  Кривошипно-шатунный механизм, он же КШМ – узел, в котором происходит преобразование прямолинейного движения поршня во вращательное. Состоит из коленвала, поршней, шатунов, маховика, а также подшипников скольжения (вкладышей), на которые опирается коленвал и крепления шатунов.

Газораспределительный механизм (ГРМ) – это система подачи в цилиндры топливно-воздушной смеси и отвода выхлопных газов. Состоит из распредвалов, клапанов с коромыслами или штангами, ремня ГРМ, благодаря которому вся система работает синхронно с оборотами коленвала.

Система питания – это узел, в котором происходит подготовка топливно-воздушной смеси, которая затем подается в камеры сгорания. В зависимости от конструкции система подачи топлива может быть карбюраторной (одна форсунка на двигатель), инжекторной (форсунки установлены перед впускным клапаном каждого цилиндра), с непосредственным впрыском (форсунка установлена внутри камеры сгорания). Включает в себя топливный бак с фильтром и насосом, карбюратор (опционально), впускной коллектор, форсунки, ТНВД (в дизельных двигателях), воздухозаборника с воздушным фильтром.

Система смазки двигателя – обеспечивает подачу смазки в каждый из узлов трения, а также на участки, требующие дополнительного охлаждения (например, на нижнюю часть поршней). Состоит из масляного насоса, подключенного к коленвалу, системы трубок и каналов, выходящих на пары трения, масляного фильтра, масляного поддона. В зависимости от конструкции различаются двигатели с «сухим» и «мокрым» картером. У первых емкость для сбора моторного масла расположена отдельно, во вторых – непосредственно под двигателем.


Система смазки двигателя: 1 – масляный насос; 2 – пробка сливного отверстия картера; 3 – маслоприемник; 4 – редукционный клапан; 5 – отверстие для смазывания распределительных шестерен; 6 – датчик сигнальной лампы аварийного давления масла; 7 – датчик указателя давления масла; 8 – кран масляного радиатора; 9 – масляный радиатор; 10 – масляный фильтр.

Система зажигания – нужна для поджига топливной смеси в камере сгорания. Применяется только на бензиновых двигателях, поскольку дизтопливо воспламеняется само от сжатия. Включает в себя свечи зажигания, высоковольтные провода, катушки зажигания, а также распределитель (трамблер) на двигателях старого типа. В современных моторах система зажигания обходится без трамблера и даже без проводов: используется конструкция «катушка на свече».


Система зажигания двигателя: 1 – генератор; 2 – выключатель зажигания; 3 – распределитель зажигания; 4 – кулачок прерывателя; 5 – свечи зажигания; 6 – катушка зажигания; 7 – аккумуляторная батарея.

Система охлаждения – заботится о поддержании заданной рабочей температуры двигателя. Жидкостная система охлаждения состоит из теплоносителя (охлаждающей жидкости, антифриза), рубашки охлаждения (сеть камер и каналов внутри блока цилиндров), теплообменника (радиатор охлаждения), водяного насоса и термостата.

Электросистема – это источники энергии, необходимой для старта двигателя и поддержания его работы. К электросистеме относится аккумуляторная батарея, генератор, стартер, проводка и датчики работы двигателя.

Выхлопная система – отводит продукты сгорания из двигателя, выполняет функцию доочистки выхлопных газов, регулирует звук работы мотора. Состоит из выпускного коллектора, катализатора и сажевого фильтра (опционально), резонатора, глушителя. Каждая их этих частей постепенно развивается и совершенствуется в зависимости от запросов времени. Стремление к росту мощности сменилось поиском самых надежных и долговечных решений, затем на первое место вышла экономия топлива, а сегодня – забота о природе.

Принцип работы двигателя

Во всех ДВС, какой бы конструкции они ни были, используется один и тот же принцип работы. Это преобразование энергии теплового расширения при сгорании топлива сначала в прямолинейное, а затем во вращательное движение.

Принцип работы четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации. Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта). Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия. При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию.

Но чтобы этого не произошло, используется  большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

В этих двигателях сжатие и рабочий ход совершаются также как в четырёхтактных. Но очистка и заполнение цилиндров топливной смесью происходит за очень короткое время в момент нахождения поршня в самом нижнем положении. Если в четырёхтактном двигателе смесь попадает в камеру сгорания через открытые отверстия клапанов, то в этом моторе очередная порция смеси поступает в цилиндр через специальные отверстия, называемыми окнами. Они открываются и закрываются телом поршня.

Процессы наполнения полостей цилиндра новой смесью и удаления продуктов сгорания называются продувкой.

Для осуществления продувки внутренняя полость цилиндра напрямую связана с КШМ. По сути, поршень двигается в одном пространстве с кривошипом. Под ним образуется полость, которую называют кривошипной камерой или картером. Эта камера тоже участвует в процессах газообмена. В ней периодически создаётся разрежение. Это позволяет поступать новой порции смеси через впускное отверстие.

Такая конструкция позволяет двигателю развивать в 1,5 раза большую мощность по сравнению с другими моторами аналогичного объёма при тех же оборотах двигателя. Но есть и ряд недостатков.

  • Детали в таком двигателе работают с большей интенсивностью, то есть быстрее изнашиваются.
  • Особое значение придаётся герметизации всех механизмов, работающих практически в одном пространстве: поршня, цилиндра и кривошипа.
  • Так как в картере нельзя устроить масляную ванну, то смазку поршня и других деталей осуществляют добавлением масла в топливо.
  • Перепады давления смеси в цилиндре не так велики, поэтому для повышения производительности двигателя часто используют принудительную продувку.

Рабочий цикл осуществляется в течение одного оборота коленвала.

Видео: Принцип работы двухтактного двигателя

Характеристики двигателя внутреннего сгорания

 Просмотрев множество информации про различные автомобили, любой интересующийся человек, увидит определенные основные параметры мотора:
 • Мощность силового агрегата, измеряющуюся в л.с. (или кВт*ч);
 • Максимальный крутящий момент развиваемый силовым агрегатом, измеряющийся в Н/м;
 Большинство автолюбителей, разделяют силовые агрегаты, только по мощности. Но данное разделение не совсем верное. Безусловно, агрегат в 200 «лошадей», предпочтительнее двигателя в 100 «лошадей» на тяжелом кроссовере. А для легкого городского хэтчбека, хватит и 100 сильного мотора. Но есть некоторые нюансы.
 Максимальная мощность, указанная в технической документации, достигается при определенных оборотах коленвала. Но используя автомобиль в городских условиях, водитель редко раскручивает мотор выше 2 500 оборотов в минуту. Поэтому, большее время эксплуатации машины, задействована только часть потенциальной мощности.
 Но, часто, бывают случаи на дороге. Когда необходимо резко увеличить скорость для обгона, или для ухода от аварийной ситуации. Именно максимальный крутящий момент влияет на способность агрегата быстро набрать требуемые обороты и мощность. Если сказать проще, крутящий момент влияет на динамику автомобиля.
 Стоит отметить небольшую разницу между бензиновыми и дизельными моторами. Двигатель работающий на бензине — выдает максимальный крутящий момент при оборотах коленчатого вала от 3 500 до 6 000 в минуту, а дизельные моторы могут достигать максимальных параметров при более низких оборотах. Поэтому, многим кажется. Что дизельные агрегаты мощнее и лучше «тянут». Но, большинство самых мощных агрегатов используют бензиновое топливо, так как они способны развить большее число оборотов в минуту. 

Наглядный пример разницы бензинового и дизельного двигателя  
 А для подробного понимания термина крутящий момент, следует посмотреть на единицы его измерения: Ньютоны умноженные на метры. Другими словами, крутящий момент определяет силу, с которой поршень давит на коленчатый вал, а тот в свою очередь передает мощность на коробку передач, и в конечном итоге — на колеса.
 Также, можно упомянуть про мощную технику, у которой максимальный крутящий момент может достигаться при оборотах в 1 500 в минуту. В основном — это трактора, мощные самосвалы, и некоторые дизельные вездеходы. Естественно, таким машинам нет необходимости раскручивать мотор до максимальных значений оборотов.
  
 Основываясь на приведенной информации, можно сделать вывод, что крутящий момент зависит от объема силового агрегата, его габаритов, размеров деталей и их веса. Чем тяжелее все эти элементы, тем более преобладает крутящий момент на низких оборотах. Дизельные агрегаты имеют больший крутящий момент и меньшие обороты коленчатого вала (большая инертность тяжелого коленвала и других элементов не позволяют развивать больших оборотов).

Классификация двигателей

Поскольку ДВС растут и совершенствуются уже более 100 лет, набралось довольно много их разновидностей. Классифицируют двигатели по разным признакам и свойствам.

По количеству цилиндров

Двигатели делят по количеству цилиндров. Общее их число может изменяться от 1 до 16. Но в наиболее распространенных силовых установках используется от 3 до 8 цилиндров. Чем большее количество цилиндров содержит двигатель, тем выше его мощность. Но одновременно приходится решать дополнительные задачи по охлаждению, распределению топлива и пр.

Чаще применяются моторы с четным числом камер сгорания, чтобы сбалансировать и уравновесить работу агрегата. Однако на некоторых моделях автомобилей Ford установлены уникальные трехцилиндровые двигатели.

По принципу подачи воздуха

Моторы делят по принципу подачи воздуха в камеры сгорания. Различают такие силовые установки:

  • атмосферные – традиционный ДВС, где воздух закачивается в камеру цилиндров поршнем;
  • турбинные – при использовании дополнительной подкачки.

Турбокомпрессор использует энергию выхлопных газов, с вращением турбины, дополнительно нагнетающей воздух, принудительным способом. Преимущества моторов с турбонаддувом в возрастании мощности за счет увеличения притока воздуха. Недостатки – в излишнем усложнении конструктивного устройства.

По типу конструкции

Исходя из типа конструктивного устройства, моторы делят на две такие группы:

  • поршневую – наиболее распространенная разновидность, привычная для большинства автовладельцев, в которой агрегат состоит из коленвала и поршней, двигающихся в цилиндрах;
  • роторно-поршневого – принцип работы которого изобретен Ванкелем.

В двигателе Ванкеля, вместо привычных поршней применяется трехгранный ротор, разделяющий цилиндрическую камеру сгорания на три отсека, с цикличными процессами для каждого из них.

Роторно-поршневой агрегат не слишком распространен. Такие моторы устанавливали на некоторых моделях автомобилей. Но недостаточная эффективность конструкции привела к тому, что от этой идеи впоследствии отказались.

По принципу создания рабочей смеси

Принцип работы двигателя внутреннего сгорания различается способами смесеобразования:

  • внешнее: в карбюраторных моторах и в агрегатах с впрыском топлива во впускной коллектор;
  • внутреннее: в дизельных двигателях и бензиновых с непосредственным впрыском в камеру сгорания.

По рабочему циклу

В зависимости от характеристики рабочего цикла, ДВС могут быть:

  • двухтактными;
  • четырехтактными.

По принципу работы ГРМ

Газораспределительный механизм управляет работой двигателя, открывая и закрывая клапаны для впрыска топливо-воздушной смеси. Клапаны работают от распределительного вала, приводимого в движение коленвалом за счет цепи или ремня. Компоновка мотора может предусматривать один распредвал при рядном размещении цилиндров, или несколько (от двух до четырех) – при V-образном.

По мере развития техники, традиционную механическую систему впрыска сменила электронная, где момент открытия клапана определяет компьютерный блок. В связи с этим используются адаптивные и пневматические модули, прибавляющие до 30 процентов эффективности в мощностных показателях двигателей.

Разновидности двигателей по использующемуся топливу

С учетом типа топлива, различают двигатели внутреннего сгорания:

  • бензиновые – с применением бензина, воспламеняемого искрой от свечей и катушек зажигания, синхронизированных с вращением коленчатого вала; такие моторы развивают наибольшую скорость;
  • дизельные – в таких моторах топливо-воздушная смесь воспламеняется самопроизвольно, при достижении показателя давления критической отметки; свечи зажигания здесь отсутствуют, но используют прямой впрыск, при подаче горючего под большим давлением, учитывая характеристики среды в камере сжатия; отличаются большой мощностью, при ограниченной скорости; преимущественно устанавливают на тяжелую технику;
  • газовые – работают на сжиженном газе, что обходится дешевле бензина; предполагают более высокие температуры, что требует определенных конструктивных решений и особых сортов смазочной жидкости;
  • гибридные – совмещают применение двигателя внутреннего сгорания с электрической установкой; в обычных условиях задействован электродвигатель, ДВС используется для подзарядки аккумуляторных батарей или при возрастающей нагрузке на силовую установку;
  • водородные – применяют относительно недавно, по причине повышенной опасности, требующей соответствующих конструктивных решений; при разложении воды на водород и кислород методом электролиза, высок риск нестабильного состояния среды, с опасностью взрыва; не так давно изобрели новый способ – с раздельным поступлением этих газов; кислород забирается из воздуха, а водородом наполняют баки, помещенные на машине; в итоге процесс работы обратен электролизу, с выработкой электроэнергии и образованием воды от соединения элементов при работе.

Наибольшее распространение получили бензиновые двигатели. Но за новыми гибридными и водородными установками, по мнению большинства ученых и конструкторов, будущее развития техники. Эти двигатели все более совершенствуются, но насколько их использование окажется эффективным – покажет время.

По расположению цилиндров

Цилиндры в двигателях компонуются в различном порядке. Рядное расположение – наиболее простое в отношении обслуживания, но не самое выгодное с точки зрения общей компоновки агрегата.

Исходя из порядка расположения цилиндров, выделяют двигатели с таким их размещением:

  • рядным – когда цилиндры установлены в ряд и соединены с общим коленчатым валом
  •  
  • V-образным – с размещением цилиндров в двух плоскостях, под взаимным углом от 45 до 90 градусов; коленчатый вал остается единым;
  • VR-образным – разновидность предыдущего устройства, при небольшом угле группы цилиндров (в пределах от 10 до 20 градусов);
  • W-образным – когда количество плоскостей цилиндров может быть 3 или четыре, при одном коленчатом вале;
  •  
  • U-образным – компоновка единого силового агрегата из двух рядных блоков, объединенных общей системой охлаждения и подачи топлива, с двумя отдельными коленчатыми валами;
  • оппозитным – когда от одного коленвала работает две группы поршней, направленных противоположно;
  • встречным – особый тип конструкции, когда в каждом из цилиндров работает по паре поршней, двигающихся в противоположных направлениях; конструктивно такой мотор представляет собой единую цилиндро-поршневую группу при двух коленчатых валах;
  • радиальным – если группа поршней приводится из одной точки общего коленвала, с шатунами, расходящимися по направлениям радиуса.

В автомобильной технике наибольшее распространение получили различные разновидности V-образной конструкции, включая сходные с ней типы устройства. Радиальные моторы используются на самолетах. Остальные виды силовых установок применяются ограниченно.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Недостатки ДВС

  • При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.
  • Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).
  • Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Тюнинг

Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

4. Ремонт ДВС в автомобиле

Из чего состоит, и что такое ДВС в автомобиле мы разобрались, теперь немного расскажем о ремонте ДВС. Так как ДВС является сложным инженерным устройство и состоит из множества систем, которые должны слаженно работать, выход из строя или обшивка одной системы двигателя ведет к неровной работе системы в целом или к полной остановке мотора — поломке.

Например, вышла из строя форсунка распыления топливной смеси в одном цилиндре, следовательно, в одном цилиндре нет детонации и что происходит с мотором в целом?

Мотор или как его еще называют ДВС, теряет мощность, и, если мотор 4 цилиндровый будет работать с рывками и провалами. С большой вероятностью будет давать сильную вибрацию на кузов, из-за ассиметричного зажигания. На помощь приходит диагностика и ремонт ДВС, автомобиль подключают к компьютеру и считывают ошибки по работе мотора. По набору ошибок, мастера поймут в чем причина поломки и поменяют форсунку.

Стоимость ремонта ДВС в автомобиле варьируется от модификации самого мотора и вида неисправности. Бывает, такое, что сама машины дешевая, а ремонт мотора дорогой, из-за неудобного расположения различных узлов. Бывает наоборот. Лучше всего не запускать проблемы по ДВС до ремонта. Нужно вовремя вменять масло, фильтры. Ели появляется как-либо проблема, нужно сразу вытиснять в чем причина и решать вопрос, пока мелкая проблема не переросла в полномасштабный ремонт.

История происхождения двигателя внутреннего сгорания

  • История создания двигателя внутреннего сгорания началась более 300 лет назад, когда первый примитивный чертеж сделал Леонардо ДаВинчи. Именно его разработка положила основу созданию двигателю внутреннего сгорания, устройство которого можно наблюдать на любой дороге.

В создание различных ДВС внесли наибольший вклад такие инженеры как:

  • Джон Барбер (изобретение газовой турбины в 1791);
  • Роберт Стрит (патент на двигатель на жидком топливе, 1794 год);
  • Филипп Лебон (открытие светильного газа в 1799, первый газовый двигатель в 1801);
  • Франсуа Исаак де Риваз (первый поршневой двигатель, 1807);
  • Жан Этьен Ленуар (газовый двигатель Ленуара, 1860);
  • Николаус Отто (двигатель с искровым зажиганием и сжатием смеси в 1861 году, четырёхтактный двигатель в 1876-м);
  • Рудольф Дизель (двигатель Дизеля на угольной пыли, 1897, двигатель на керосине с КПД 25% в этом же году);
  • Готлиб Даймлер и Вильгельм Майбах;
  • Огнеслав Степанович Костович (бензиновый мотор с карбюратором, 1880-е);
  • Густав Васильевич Тринклер (дизельные двигатели на жидком топливе, 1899);
  • Раймонд Александрович Корейво;
  • Фридрих Артурович Цандер;
  • Вернер фон Браун (реактивные и турбореактивные двигатели, начиная с 1930-х и заканчивая Лунной программой);

Первым, кто внедрил массово двигатели внутреннего сгорания — был легендарный Генри Форд, чьи автомобили до сих пор пользуются огромной популярностью. Он же первый выпустил книгу «Двигатель: его устройство и схема работы».

Конвейер Генри Форда
Генри Форд был первым, кто начал вычислять такой полезный коэффициент, как КПД двигателя внутреннего сгорания. Этот легендарный человек считается прародителем автомобилестроения, а также части авиапромышленности. В современном мире, нашлось широкое применение ДВС. Они оснащаются не только в автомобили, но авиация, а благодаря простоте конструкции и обслуживания устанавливается на многие виды транспортных средств и как электрогенераторы переменного тока.

Термины, касающихся устройства двигателя автомобиля

Камера сгорания –замкнутое пространство, где осуществляется воспламенение и горение топливовоздушной смеси. Сверху камера сгорания ограничена нижней поверхностью головки цилиндра, сбоку – стенками цилиндра, снизу –днищем поршня.
Толкатели клапанов, подъёмники –промежуточное звено, необходимое для передачи движения от распределительного вала к остальным частям механизма привода клапанов.
Коромысла (рокеры). Детали двигателя, функции которых заключаются в передаче движения от распределительного вала к клапанам.

Маховик. Деталь, ответственная за обеспечение равномерного вращения коленчатого вала. На цилиндрической устанавливается зубчатый венец. Он помогает провести пуск электростартера.
На схеме представлено расположение основных частей двигателя при рассмотрении его со стороны его задней части. На фланце коленчатого вала видны отверстия под болты, с помощью которых к фланцу крепится маховик с зубчатым венцом, или платина привода гидравлического трансформатора автоматической трансмиссии.

Andrey
Оцените автора